

Bio-PET or PEF ?

1 on 1 replacement of fossil building blocks by green equivalents Mid/long term potential has to be cost competitive versus existing oilbased routes: nothing gained except 'being green'

Introduction of new monomers such as FDCA Mid/long term potential has to be cost competitive or better processing/ performance versus oil-based alternatives

Select the right target Elemental Feedstock composition

e.g. C₈H₁₀ (p-Xylene; 91% C; 9% H) "under functionalized"

e.g. C₆H₁₂O₆ (glucose) "over functionalized"

Functionalisation O-introduction (Depolymerisation &) defunctionalisation (O-removal)

H0^CCOH

MEG from glucose

4 steps (= 4 plants !) from glucose to ethylene glycol avantium $\xrightarrow{\text{enzymes}}$ C₆H₁₂O₆ $(C_{6}H_{10}O_{5})_{x}$ $2CH_3CH_3OH + 2CO_3$ $+ xH_2O$ 2x 44 = 88 Starch Glucose Ethanol 180 2x 46 = 92 (51 wt%) $(162)_{x}$ 2 H₂O 2 CH₂=CH₂ $2 \,\mathrm{CH}_3 \mathrm{CH}_2 \mathrm{OH}$ Ethylene Ethanol 2x 28 = 56 (31 wt%) 2 HOCH, CH, OH 2 H₂C Ethylene glycol (EG) Ethylene oxide $2 \text{ H}_2\text{O}$ = Mono EG (MEG) 2x 62 = 124 (69 wt%) 2x 44 = 88 (49 wt%)

RAY technology: Superior Carbon Efficiency

Superior economics

Modified from: VOL. 10 NO. 2 • APRIL 2014 INDUSTRIAL BIOTECHNOLOGY 5

Fig. 3. Oxygen content of feedstocks and materials, and theoretical yield of materials from sugar pX = p-xylene; C2 = ethylene

Very basic "back of the envelope" economics glucose → chemicals intermediate scale process (100kt/y) new technology

- Count # chemical conversion steps: €100/step + €100 per purification/ solvent swap (€50 in case of mature technology step) (*)
- Estimate realistic yield Y in commercial process
- Evaluate mass loss per mol of product
- Assume €350/ton for feedstock (long term large scale contracts)
- Calculate feedstock required per ton final product: 100/Y x 180/ MW P

4 step ethylene glycol with all steps Y = 95% after purification: Feedstock required per ton MEG: 100/81 x 180/124 = 1.79 ton Production cost: 1.79 x €350 + €250*** + €250*** = €527 + €600 = €1127 / ton

Ethylene: 2 steps with Y = 90% Feedstock required per ton ethylene: $100/90 \times 180/56 = 3.57$ ton Production cost: $3.57 \times \leq 350 + \leq 150^* + \leq 150^* = \leq 1250 + \leq 300 = \leq 1550$ / ton

RAYTM 1 step ethylene glycol with Y = 70% after purification: 100/70 x 180/186 = 1.38 ton Production cost: 1.38 x €350 + €100 + €100 = €683 / ton + side product credits 10

Glucose (from corn)

orts orts opend

Prices were calculated using historical data for corn & co-products, typical yields for dextrose and coproducts and a processing fee that could reasonably be negotiated by a large dextrose consumer.

p. 11

www.evalueserve.com | ${\ensuremath{\mathbb C}}$ 2012 Evalueserve. All Rights Reserved

Historical CAPEX versus annual product value

avantium

More detailed first pass techno-economics (Feasibility phase) – phys prop & factor model

	Α	В	С	D	E	F	G	Н	Ι	J	J K L		М
15						Consumption				Annual Cost	Unit Cost		
16				Cost/Unit		Factor				M\$		\$/T	%
17	Ra	w Material	S										
18	18 Ethylbenzene			\$410.00	\$/MT	1.05	T/MT			\$215,250		\$430.50	
19													
20													
21								Total Raw M	Aaterials	\$215,250		\$430.50	72.2
22													
23	Ca	talysts and	d Chemi	cals									
24		Dehydr.cat		14500	\$/cuM	0.00014	cuM/MT			1015		\$2.03	
25		NSI Inhibitor		6.30	\$/kg	0.44	kg/MT			1386		\$2.77	
26		TBC Inhibi	tor	9.50	\$/kg	0.02	kg/MT			95		\$0.19	
27													
28							Total	Catalysts and Ch	emicals	\$2,496		\$4.99	0.8
29													
30	Uti	ilities											
31		Electricity		0.045	\$/KWH	26.0	kWh/MT			585		\$1.17	
32		Fuel		2.50	\$/MMBTU	0.32	MMBTU/M	1T		400		\$0.80	
33		Boiler feed	water	1.60	\$/Mgal	0.00	Mgal/MT			0		\$0.00	
34		Cooling wa	ater	0.08	\$/Mgal	24.57	Mgal/MT			983		\$1.97	
35		HP Steam		4.40	\$/Mlb	1.65	MIb/MT			3630		\$7.26	
36		MP Steam		4.20	\$/MIb	0.24	MIb/MT			504		\$1.01	
37		LP Steam		3.60	\$/Mlb	5.05	MIb/MT			9090		\$18.18	
38													
39								Total	Utilities	\$15,192		\$30.38	5.1
40													
41													
42	Fi>	ced Costs											
43						Basis							
44		Operators		12			210	M\$/YR		2520		\$5.04	
45	Supervision		1	shift position	ons, each &	255	M\$/YR		255		\$0.51		
46		Maintenance		5	% ISBL +	3	% OSBL			7840		\$15.68	
47		Plant Overhead		80	% operatin	ng labor +	20	% maint.		3788		\$7.58	
48	Taxes & Insurance		2	% of fixed	capital				3360		\$6.72		
49								Total Fixe	ed costs	\$17,763		\$35.53	6.0
50													
51								OPERATING	COSTS	<u>\$250,701</u>		\$501.40	84.1
152	1			1								1	

13

The stage: Some numbers Terephthalic acid (TA): a commodity chemical

- Capacity in 2018: 65 Mt (6% growth per year)
- TA market value: €80 Billion
- In China, 1500 m³ CSTR's are constructed with 1.5 million ton capacity.

Ekato slurry tank shaft with 20m length and 0.7m diameter

1. bio-based paraxylene

- Virent Inc. (Madison, WI). Aqueous phase reforming Hydrodeoxygenation of C5/C6 sugars to BTX. Theoretical hydrocarbon weight yield is 38%
- Gevo Inc. (Englewood, CO)
- Anellotech Inc. (Pearl River, NY)
- U of North Carolina at Chapel Hill (UNC)
- Origin Techn. (formerly Micromidas; West Sacramento, CA)
- Avantium (Amsterdam) and The Coca-Cola Company (Atlanta, GA)

Diels-Alder chemistry

• The reaction is an equilibrium

- Electron donating groups on diene
- Electron withdrawing groups on olefin
- The reverse reaction is called retro-Diels-Alder (rDA)
- The driving force for the DA is the enthalpy gain by forming σ -bonds
 - Low temperatures favor the DA
- The driving force for the rDA is the entropy gain from 1 to 2 molecules
 - Higher temperatures favor the rDA

- Ethylene unreactive at low p
- High T needed for dehydration
- Unsubstituted furan gives
 polymers

Avantium & Coca-Cola. Diels Alder of furans with ethylene 1.5 C6 sugar needed per TPA at 100% yield

- WO2014/065657 (prio 10/2012)
- To PX: 88% yield of p-xylene (1 step for 3&4 !!);
- To PTA: 17% yield in 1 step from FDCA (>90% selective);
- Main challenge: best results obtained after 24 hrs at 200°C

Modified from: VOL. 10 NO. 2 • APRIL 2014 INDUSTRIAL BIOTECHNOLOGY 5

Fig. 3. Oxygen content of feedstocks and materials, and theoretical yield of materials from sugar pX = p-xylene; C2 = ethylene

Fig. 3. Oxygen content of feedstocks and materials, and theoretical yield of materials from sugar pX = p-xylene; C2 = ethylene

Paraxylene, PTA, MEG, PET

*Feedstock prices for US

Latest PET Prices Not available

p. 23

Sources: ICIS Pricing; ICIS News Sources: ICIS Pricing; ICIS News

Very basic "back of the envelope" economics glucose → chemicals intermediate scale process (100kt/y) new technology

- Count # chemical conversion steps: €100/step + €100 per purification/ solvent swap (€50 in case of mature technology step) (*)
- Estimate realistic yield Y in commercial process
- Evaluate mass loss per mol of product
- Assume €350/ton for feedstock (long term large scale contracts)
- Calculate feedstock required per ton final product:

100/Y x 180/ MW P

4 + 2 step fructose/glucose to TPA (→HMF → DMF + bioethylene (from ethanol) → pX →TPA) with Y = 60% after purification:

Feedstock required per ton TPA: 100/60 x 180/142 = 1.80 x 116/142 (C6 fragm) = 1.47 ton Feedstock required per ton ethylene: 100/90 x 180/56 = 3.57 x 26/142 (C2 fragm) = 0.65 ton Feedstock required per ton TPA: 1.47 + 0.65 = 2.12 ton Production cost: 2.12 x €400 + €450* + €450* = €848 + €900 = €1748 / ton

2 step fructose to FDCA with Y = 60% after purification: Feedstock required per ton FDCA: 100/60 x 180/156 = 1.92 ton Production cost: 1.92 x €400 + €200 + €200 = €769 + €400 = €1169 / ton

Avantium Corporate Technology UvA - Industrial Sustainable Chemistry

Applied research with focus on sustainable polymers With funding from EU, NWO, and Industry (e.g. Avantium, LEGO)

YXY Technology Conversion

Maintaining Leadership

Upscaling our technology into world scale production

LAB- SCALE	PILOT PLANT SCALE		COMMERCIAL SCALE	INDUSTRIAL SCALE
2008	2011 - now	-	2023	expected >2024
Amsterdam	Geleen (NL)	_	DELFZIJL (NL)	Licensee Site
Kg's	Tons		5000 Tons	Industrial Scale
Innovative research	Technology development	_	Commercial launch of FDCA & PEF	Roll-out of FDCA & PEF at larger scale
		-		Licensing

1 Commercial plant for proof of concept & market development

2 Licensing to rapidly expand market

The Scope of FDCA & PEF

APPLICATIONS OF FDCA

APPLICATIONS OF PEF

- **1** New molecule with countless applications
- **2** PEF has the market size potential due to product properties
- **3** Fulfilling market needs & trends

Pilot Plant – Chemelot Geleen (NL)

"Prove the process" & "Prove the products" (application development)

PEF has barrier !

32

Why PEF?

PEF: the Next Generation Polyester

- Superior performance over PET:
 - O₂ barrier: 10x improvement
 - H₂O barrier: 2x improvement
 - CO₂ barrier: 4x improvement
- Improved Thermal Stability
 - − Tg: ~88°C \rightarrow 12°C higher than PET
- Excellent Mechanical Properties:
 - Tensile Modulus PEF : 1.6* PET
- Significant reduction in carbon footprint
 - 70% lower carbon emission
 - 65% lower NREU

Additional properties

- Improved Crystallization Behavior → No co-monomer needed to reduce crystallization rate.
- PEF exhibits well behaved stress-strain curves and strain hardening behavior.
- PEF rheology comparable with typical PET grades
- PEF heat distortion temperature is ~12°C higher than PET (77°C PEF vs 65°C for PET)
- Hydrolytic stability similar as PET
- Mechanical recycling including sorting demonstrated (similar to PET)
- Food Contact Safety studies finalized: positive EFSA opinion (2014)
- 65-70% reduction in NREU and CO2
- More reductions expected through process improvements

Tensile strength ISO 527-1/-2

Thesis Dolmans ITA, RWTH 2013

PEF Paper Bottle with PABOCO

- ✓ PABOCO is JV between BillerudKorsnäs and ALPLA.
- Avantium will provide fully plant-based recyclable bottle for Carlsberg.
- Thin layer of PEF will provide the Paper Bottle with high barrier. Mechanical properties from the paper.

PEF Market Traction in High-Value Applications

Multilayer packaging

Replace with single material PEF layers, reducing cost of packaging while enabling recycling

Enhanced bottles

PEF in small volume CSD/beer bottles or as barrier layer providing performance and enabling recycling

Optical film

Enable thinner LCD/OLED displays

Recycling

- Optimize end-of-life solutions for PEF polymer
- PEF to PEF recycling is similar to PET recycling
 - Mechanical & Chemical recycling
- PEF can be separated from PET by IR sorting
 - Effect of PEF in rPET stream:
 - PEF has significantly less impact on rPET than Nylon or PLA

→ European PET Bottle Platform (EPBP) has awarded interim approval to PEF Polyester in PET (up to 50kt/a)

First PEF T-shirts of 100% recycled PEF bottles

100% Biobased

Conventional polyester spinning technology

Made from 100% Recycled PEF

Conventional polyester dyeing technology

Biodegradation of PEF !! Industrial Composting Conditions (in soil @ 58 °C) With and without weathering (UV light)

- PEF (weathered): 240 days to 90% biodeg. PEF (unweathered): 380 days to 90% biodeg.
- No PET degradation observed (experiments stopped after 270 days)

UNIVERSITY OF AMSTERDAM

multi year field trials started Q1 2019

- Mass loss,
- surface change,
- Mol. weight changes
- micro-organism study

University of Amsterdam 10 year field trials

Initial results (after 6 months) Amsterdam, Netherlands

University of Amsterdam

Why is even slow biodegradation relevant

NOT as designed end-of-life option !!

University of Amsterdam

Why is even slow biodegradation relevant

NOT as designed end-of-life option !!

- Take PET fibers from washing textiles as example
 - If on average 1 million tons of PET fibers entered the environment every year since 1970 and degradation takes 500 years, we have 50 million tons of PET fibers in the environment today and >100 million tons in 2070.
 If PEF degradation takes 5 years, we would have 5 million tons of PEF fibers in the environment today and also in 2070.

VOLTA

electrochemistry platform

CO₂ as feedstock

Electrochemistry at Avantium

In Nov 2016, <u>Avantium acquired Liquid Light Inc</u>, a Princeton 2009 start-up in which >\$35M was invested by VC's to develop CO₂ to MEG

platform and to commercialize new process technologies using CO2 as feedstock to produce sustainable chemicals and materials.

Liquid Light re-emerges from the dark

CO2 as feedstock

CO₂ to C2 - Platform Opportunity

CO₂ valorization (CCU) via electrochemical routes – Cost drivers.

- Atom efficiency (at 100% yield).
 - CO₂ to formate (HCOOH) and to oxalate (HOOC-COOH) ~ 100% weight retention
 - CO_2 to methanol (CH₃OH) ~ 73% weight retention
 - CO_2 to methane (CH₄) ~36% weight retention
- Number of electrons needed (see next slide).
 - Note that an 8 electron reduction at 36% atom efficiency (CO_2 to methane) requires 8/2 x 100/36 = 12 x more electrons (electricity) than a 2 electron reduction at 100% atom efficiency per ton of product produced.
- Faraday efficiency and overpotential
 - The efficiency of the electrons used for desired reaction (versus electrons going to side reactions and heat)
- Current Density (mA/cm2)
 - The productivity per area of electrode (= Capex ! > 200 mA/cm2 is typically required)
 GJ Gruter Industrial Sustainable Chemistry 52

Very basic "back of the envelope" economics electrochemistry: CO2 → chemicals intermediate scale process (100kt/y) new technology

- Count # chemical conversion steps: €100/step + €100 per purification/ solvent swap (€50 in case of mature technology step) (*) and €200/electrochemical step)
- Estimate realistic yield Y in commercial process
- Evaluate mass loss per mol of product
- Assume €50/ton for feedstock (purification/ transport ?)
- Assume 3500 kWh electricity for a 2 electron reduction of 1 ton of CO2, Assume €0.05/kWh
- Calculate feedstock required per ton final product: 100/Y x 180/ MW P

1 step CO2 to formate. Faradeic yield > 95% Feedstock required per ton Formate: $100/95 \times 44/45 = 1.03$ Production cost: $1.03 \times €50 + €175 + €200 + €100 = €525$

2 x formate → oxalate; Y = 90% Production cost: (100/90 * 90/90 * €525) + 100 + 100 = €585 + 100 + 100 = €785

Oxalate → oxalic acid → MEG; Y = 90% Production cost: $(100/90 \times 92/62 * \notin 785) + \notin 200 + \notin 200 = \notin 1295 + \notin 200 + \notin 200 = \notin 1695$

CCU: Using CO₂ as feedstock: electricity cost avantium 2e → €175/ton CO2 2e → €175/ton CO2 =€175/ton formate = €280/ton CO carbon formic acid **Reductive** monoxide methanol 2E 2Θ 6Θ carboxylic ethylene acids ≥8Θ methane ethanol organic carbamates inorganic ureas carbonates organic **Non-reductive** carbonates

CCU: Using CO₂ as feedstock: electricity cost

CCU: Using CO₂ as feedstock: electricity cost

CO business case

Carbon monoxide*

Oxalic acid → glycolic acid (€3500/ton) Glycolic acid (GA) polymers for biodegradable barrier film

- Glycolic acid Lactic acid copolymers with 50-90% GA content for barrier film
- Increased barrier to O₂ and water vapor with increasing GA content
- Barriers even better than PEF !!
- Polymers with > 75% GA are Low Tg fully biodegradable polymers
- Polymers with higher LA content are industrially compostable

Gruter et al. ACS Appl Pol Mat 2020

Elements regarded as critical against risk criteria of supply constraints, demand growth and geographical spread.

*Lanthanide series	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
Eunthaniae series	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
* * Actinide series	89	90	91	92	93	94	95	96	97	98	99	100	101	102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

Is Chemistry a mature discipline from which radical innovation cannot be expected anymore ?

UNIVERSITY OF AMSTERDAM

- Huge challenges ahead for chemistry to enable transition from linear to circular economy.
- Our chemical future is in an embryonic stage !!
- Biomass biorefineries biobased products: we are only at the beginning...
- CO₂ as feedstock
- Wind/Solar Electrochemistry, energy storage,...
- Scarcity of elements: In, Ag, Sb, Pt, $P.... \rightarrow$ development of alternatives
- Many others...